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FLOW PAST A CONVEX CORNER WITH A FREE STREAMLINE 
UNDER LARGE SUBSONIC VELOCITIES* 

V.N. DIESPEROV 

The flow past a convex corner of a subsonic gas flow with a free stream line 
converging to the corner point is studied. A solution is constructed in the hodo- 
graph plane of a nonlinear equation system for perturbed velocities, describing in 
the first approximation a potential flow in a neighborhood of the corner point and 
usually used in transonic gasdynamics /l/. This solution as the Mach number MO-+0 
at the corner point passes in a continuous manner into the solution of the Laplace 
equation taken as the limit equation when investigating the separation of a laminar 
boundary layer of an incompressible fluid /2,3/, while as MO--l, intoaselfsimilar 
solution of the Fal'kovich-KKbrm6n equation with a selfsimilarity parameter n="ib 

/4/, which describes the external potential current under a sonic separation from 
the corner point. The main attention is paid to the case when the approach stream 
velocity in it becomes close to sonic and an essential role in the formationofthe 
flow begins to be played by the medium's compressibility. The equation of the free 
streamline in the whole range of variation of the Mach number, O< .v"d 1 , remains 
one and the same to within a proportionality coefficient. The pressure gradient 
specified by the exact solution of the nonlinear equations is favourable and tends 
to infinity as the corner point is approached. Under an interaction of such an ex- 
ternal potential flow with the boundary layer there is formed a domain elf free 
interaction /5--7/.Estimates are obtained,connecting the Reynolds number with the 
magnitude of the difference I- Me2 , under which either the theory of separation of 
an incompressible fluid /3/ or the theory of sonic separation can be used in the 
first approximation. 

By AOwe denote the generator of a corner abutting an incident irrotational flow of an 
ideal gas whose velocity is assumed subsonic and by OR we denote a free streamline converging 
to the corner point 0 (Fig.1). We introduce a Cartesian coordinate system X, y whose negative 
semiaxis coincides with AOand a Mises coordinate system x,$. By 4% and qu we denote the 
projections of the velocity vector onto the r- and y-axis, respectively; s is the velocity 
of sound, p is the density, p is the pressure. All equations below are assumed dimensionless. 
The values of the flow parameters at the corner point are taken as typical and marked by zero 
subscripts. We are required to find solutions of the system of Euler equations and of the 
state equations, closing it, of an ideal gas in the domain $>O , such that the nonflow con- 
dition qv= 0 when $ = 0 and s> 0, while the flow velocity equals its own value at the corner 
point when $ = 0 and r > 0 , i.e., (Qr2 + ‘&“,2)“’ = 1. 

By 4 and vv we denote the componentsofthe 

YI perturbed velocities, Qr= 1 -I- % 4; =Vv* In a 
3 neighborhood of the corner point 0 , in whichthe 

components of peturbed velocities V, and us are 
small in comparison with unity, we can construct 
a system of Euler equations and boundary condi- 
tions and represent it in the first approximation 
as 

“I 

Fig.1 
vv +o, II, -to, 5 < 0; v, +-0, ‘II, -to, x > 0 (2) 
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Here Y is the specific heat ratio. It is most convenient to study the solvabilityofproblem 

Cl), (2) in the hodograph plane. The equation system (1) can be inverted and for the deter- 
mination of the flow function 9 we obtain the linear equation 

e-$ f &M&I $$ =o , IJ, = (1 -I- y) v,, v = (1 4” Y) q/ (3) 

We are required to find the solution J,>O of Eq.(31 in the domain ~(0% ~(0, satisfying 
the conditions 

~=~,v=o,u,<o;Ip=o,uio,v~o 
(4) 

After g has been determined the quantity x is found by integrating the relations 

az L%# ar 
-=z-* YG 

ag ==-(E -M*%)~ (5) 
Bo 

when Ma-1 and e=O, i.e., when the velocity of sound has been reached at the corner point, 
Eq.(3) turns into the Tricomi equation. The boundary-value problem (31, (4) for it was 
studied in /4/, by analogy with which we shall seek the solution of problem (3), (4) when 
MoPi as a sum of eigenfunctions 

~=l~~~=i~&ufr* (k>O, i>O) 

The result of substituting it into Eq.(3) is 

$=dt+v + d,, f -.euu3 + du + + Moauu4 1 + . . + (6) 
The constant d,, cannot equal zero since the eigenfunctions $l(Z>O) change sign in the domain 
u < 0, v< 0. Substituting (6) into (5) and integrating, we obtain a solution in the first 
approximation of problem (I), (2) with M,+ 1 

When MO = 0 the solution becomes the solution of the Laplace equation, while when MO =tl 1 , of 
the Tricomi equation /4/. As should be expected, as x-t0 and for any M,# 1 the nature of 
the singularity is determined by the terms in solution (7), corresponding to the solution of 
the Laplace equation 

e$&+g=o (8) 

In the first approximation it describes the flow around problem in the linear approximation. 
To detect the influence of the nonlinear term as a function of number M, on the character of 
the flow, we consider the solution of problem (81, (2). It is given by formulas 

$=&nv +*s* ReI(D’,D)+ i@)(j& + iv)"] (9) 

a=- 
V 

~(-~I)'i~+-Oj(-~)81t-..., 

q-,0, s<o, SC=_ 

An expansion of velocity uin a neighborhood of the negative axis was obtained in /2/. 
The eigenfunctions in the expansion of rti are functions with even powers o= 2k(k>2). If how- 
ever, we allow for the nonlinearity of the boundary condition on the free streamline, then in 
the expansion of u when q== %r<O it is necessary to introduce terms with integer powers of 
Z, which corresponds to the odd values o= 2k+ 1 (k&1). Formulas (7) and (9) show that for 

any subsonic velocities and for the velocity of sound in the corner point the form of thefree 
streamline is specified by the equation 

2 2 
I'---Qo ?- -z2"*+..., r>O 

41 

and coincides with the form of the free streamline in the case of the separation of an in- 
compressible liquid /2/. At the same time the nature of the behavior of the longitudinal 
velocity component u in the first approximation in a neighborhood of the negative s-axis, 
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under the linear description (8), (9) and with Mof 1 (which is analogous to the natureofthe 
behavior in the case of an incompressible liquid a= 1, Ma= 0) , is essentially different from 
the nonlinear (7). This difference is particularly noticeable as M,-+ 1 . The equations for 
the perturbed velocities are valid if (-~1-1. When (-II)- 1 the linear theory yields 
(-z)-e,whereas solution (7) of the nonlinear equation system (1) yields (-z)- i + E. The 
pressure gradients for these values of u are, respectively, dp!dz--e-l and dpldz--1. 

Let us investigate in detail the behavior of the velocity components u and of the pres- 

sure gradient on wall AO. From formula (7) when $ = 0,~ = 0 we obtain 

(-IL)“+ q-u)2-x=0, 6+-p, x=_Lx 
d&n3 

The solution of the cubic Eq.(lO) shows that as M,, -+I and for a fixed Xthe distribution of 

the longitudinal velocity components U coincideswiththe sonic. The distribution of the 
velocity gradient has the form 

dn 

dX= 
3 :hv/3 -- 
CY 7' chcp=-l+++, X>&i_gs 

du 3 sin(n/3- rp/3) 
dX=-F sine ’ 

(11) 

From (10) and (11) it follows that as M, +I , at distances X - 8’ the ratios of the velocit- 

ies and of the pressure gradients (the subscript 1 denotes quantities calculated by the 
linear theory) are 

+0.75, (g)/(-$)l-0.6 (12) 

Estimates (12) testify that when X - fj3 the nonlinear term in Eqs.(l) begins to play an 

essential role. This result is natural since the boundary-value problem (11, (2) admits of 

a similarity transformation group 

E _ 

u= II+y)M,' at 
E’/l 

u= (1 fY)M$ G, 
x=&32, 11)=&'/+, Mo#O 

In the new variables boundary-value problem (11, (2) is independent of the mangitudeofnumber 

M,#Oand all terms at distances IN es,*- ~'12 play a like role. In this connection U-e, 

lJn, e%, u N u'lz. The estimates show as well that when. X<(f@)127we can use the lineartheory 

witnout much guilt. The pressure gradient is favorable and as X +O can be represented in 

this interval of variation of x as 

dp / dx = -(I + $1(-2ed,,x)-'l' (13) 

When X &a3 the essential role in the formation of the pressure gradient begins to be 

played by the nonlinear term in system (1). When u> 0 and u> 0 formulas (7) describe the 

gas flow with a free streamline, separating from the smooth surface. Its form coincides with 

that of the free streamline in the case of incompressible liquid separation /8/ and is deter- 

mined by the equation 
y = 21, (1 + y)-‘(2 / d,,)‘Wl* + . . ., z > 0 

men u < & I .1t02 relation (7) can be used in the region -(d&)i(6M,")< xC.0. However, if 

M,<(2 f y)-'iJ,then formulas (7) are valid everywhere that the problem's solution <an be 

described by the theory of small perturbations. When M, = 1 they become meaningless. In 

this case the medium's compressibility is vital, and in a neighborhood of the separationpoint 

there is no region in which the solution could be linearized. 

As a result of the interaction of the external potential flow described by formulas (7), 

(ll), (3) with the boundary layer under the action of an infinite pressure gradient in it 

there is formed a free interaction domain. Its extent Axdepends on the Reynolds number 

R =(p,u,$) /PO and on M,. Here Lis the characteristic size of the external potential flow, 

p is the viscosity coefficient. If Ax(((4P)127,then the flow in the free interaction do- 

main is formed by the pressure gradient (13). Let us determine the dependency of AX on the 

numbersR.and 8 and construct a solution of the Navier-Stokes equations, valid in a complete 

neighborhood of the corner AOC outside the free interaction domain. 
The equation of the free streamline and the pressure gradient (13) depend on variable x 
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in the same way as in the case of separation of an incompressible liquid's separation from 

the corner point /2/. Therefore, the dependency of all characteristic sizes of the free in- 
teraction domain on Rwill be analogous /3/. The free interaction domain's structureisthree- 
decked /3,5-a/. By u(Y)and K(Y) we denote the values of the velocity and the density at 
the corner point 0, while by Y = R'fzy , the coordinate of the boundary layer. The solution 

of the system of Navier-Stokes equations in the main deck (region 2 in the Fig.1) is sought 
as perturbations to the values U(Y) and R(Y): 

4x = u (Y) + (-z)Q 241 (Y) + (--t)ll: u2 (Y) + . . * (14) 

vV = ( -x)-‘/‘V1 (Y) + (-r)-‘1~ V, (Y) + . . ., Vg = R’/qg 
p = R (Y) + (-z)‘/* p1 (Y) + (-x)‘l’ pz (Y) + . . . 

P=lfyM,+$J~;... 

Expansions (14) describe a nonviscous turbulent flow. The functions al, VI, PI and UPI vz, Pz 
satisfy ordinary differential equations. Their integration yields 

u1 =+J'(Y), Pl=$.4*R'(Y), I/,= &U(Y) (15) 

us=2 [A, ++d,J(Y)]U’(Y)- dn 
~W)UW ’ 

do = (2 / Ed&’ 

pa=2 &$ 
[ 

+&J(Y)] .R’(Y) + doR (Y) 

V,=[A,++dJ(Y)]O(Y), J(Y)-++ dY---eY 
L 

However, expansions (14) with solutions (15) do not ensure the fulfillment of the adhesion 
boundary condition. Therefore, it is necessary to consider a viscous sublayer (domain 1) in 
which the forces of viscosity, inertia and pressure are of a like order of smallness. In it 
we seek the solutions in the form 

4X = (-V' uo (11) + (-2)": u1 (11) + . .I, 

P = 1 + yM,'d, (-x)"z + . . ., 
P = R (‘3 + t-4”’ PO (11) + (-zy/~p1 (q) + . . ., 
v, = (--d-“1 v, bl) + (--1p v, (q) + . . . 

(16) 

We assume that the viscosity coefficient is proportional to the temperature: P = CT. Using 
(16) and the state equation, we obtain 

T = .A [ 1 - (-q/4 $$ + (_ .q,z f’s” (V) (__- Pl (11) 
R” (0) R (0) 

f y.lIoado + . . . 
i 1 

If we introduce the stream function 

'Y=[(--z)"lF,(11)+(--r)"~Fl(rl)$- . ..I 11(O), 

then the equations for determining the flow field in the viscous sublayer are 

C d?F, 
---+&+++[J!+_+?& 
p (0) dV 

c d2po --- 
PrRa (0) dvf 

+&~+$$$po=O 

C flF, --- 
R3 (0) dq” 

(17) 
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The boundary conditions for them are the following. As 9 -00 expansions (14) and (16) must 
be combined. The adhesion conditions requires that F, =Fo’=Fl = F,’ = @when r) = 0. If the 
temperature of the corner's surface AO is constant, then ~*(~) = 0, pI (0) = y~~zd~~ (0) . We 
note that dp,idn# 0 when q = 0. If, however, the corner's surface is heat-insulated, then it 
is necessary to require pl' (0) =O, po(q)sO. From the latter condition as well it followsthat 
17, (q) sz 0. 

Let us consider the case when the corner's surface is heat-insulated and the Prandtl 
number Pr =I. As q -+co the solutions of Eqs.(l7), behaving algebraically, canbe represented 
as (b,, b,, % Cl are arbitrary constants) 

F,, = b,q’ii + b,q=‘” + . . ., pi = c,q”’ + . . . 

Thus, the solutions of Eqs.(17) for F. and p, must satisfy the conditions 

F, = F,’ = 0, pl’ (9) = 0, q = 0 
F, = 0 ($I), p1 = 0 (+), q -+a 

(18) 

It was shown in /9/ that the boundary-value problem (17), (18) for F, has a unique solution. 
It can be verified as well that in case Pr= 1 the integral 

PI = y&R (0) Mea + y R2 (0) M,a (Jf$ (19) 

satisfies Eq.(17) for pr and the boundary conditions (18). Let us determine the dependent of 
coefficients b, and b, on s. To do this we make an expansion transformation r] == ac, F, = @Do 
with coefficients 

In the new variables the first equation in (17) and the boundary conditions for it in (18) 

take the form 
+&~-(~~_~=I 

(Po(O)=W(O)=O, ~,i5)=B,b'la+B,r/l+..., 

5--tQa 

The constants B0 and B, are already independent of a+ Going back to the former variables, 

we obtain, as '1 +w, the following expansion of the stream function 

'y = 2'l%2;~f'C-"',~,E-"'Y"'-i- 2"'"R (0)~'1' d;;i~~~'I*,-rJ,.B1(_,)I/,y't*+ ... (20) 

Combining expansions (19) and (20) with expansions (14) yields 

(21) 

As Y +oo the functions U(Y) +I, R (Y) +I ; therefore, the boundary layer induces perturba- 
tions of order R-'/s in the external stream (domain 3): 

%, = R-1'S IA, (--a)-” + A, (-;tf-“a i_ , . J, Y -+ 03 122) 

The flow in the external stream is described by formulas 19). Thanks to the displacing in- 

fluence of the boundary layer, in expansion (9) it is necessary to introduce a new term with 

0 = - l/4. The constant equals 
&j, = -221/~d~/~Ale-'/'R-'l' 

The connection between constants D?], and D?$;:,is determined from the condition of equality to 
zero of the free streamline: 
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D-!;i= - ctg n18D’O ‘I4 

The constant A, in (15) and (22) needs to be set equal to zero since the solution connected 
with it is, in the external stream, a natural solution of the corner flow-around problem with 
a free streamline. 

The boundary layer which is separating forms a mixing layer (domains 4 and 5) whichabuts, 
on the one side, the stagnation zone (domain 6) and, on the other, the external potential flow. 
Since the stream is nonviscous in the main part of the boundary layer, the changes in velocity, 
density and pressure along each streamline are infinitesimal as R +co. This signifies that in 
the main part of the mixing layer (domain 4) the solution needs to be sought, as in the bound- 
ary layer, in the form ofperturbationsto values U(Y) and R(Y) whose behavior as Y-+0 is 
given by formulas (21). Starting from this, we seek the solution in the viscous sublayer 
(domain 5) as y' = H (0) [r+F6(n) im . . .], ‘I= Y” 1 z?“* 623) 

p= R(O)+ r""'pl(n)i- . . . 

By xO,Yo we mean an orthogonal coordinate system whose x0 -axis coincides with the free 
streamline. For the determination of F0 and p1 we obtain the equations 

As Q--too expansions (23) must be combined with expansions (20) and (Zl), while as ? + - co, 
with the expansions describing the flow in the stagnation zone. For function F, this gives 

Fo = b,,rj’” + &$‘i- . . . . ?l*m 
(25) 

F, (0) = 0, F,’ (d +o, 11+--M 

Boundary-value problem (24), (25) was solved numerically in /3/. The equation for the density 
PI in case Pr = 1 can be integrated directly 

Pi’ 2 y--l tia (0) M,a (2) 

For the vertical velocity component we have as T) +-OD 

4v= -51sF*(- c0)s-'~.R++ . . . 

Since it does not equal. zero /3/, the motion 

is induced in the stagnation zone. The pressure and the density are found from the relations 

Solution (26) does not satisfy the adhesion condition on the corner's surface Oc. Along it 
the velocity equals 

--6J8F, (-CO) I-+ yin-l SjaaR-‘l* 

The boundary layer on the corner's surface OCfdomain 7) is constructed in the usual manner. 
Thus, the corner AOC has been completely bypassed and the expansions of the solution, con- 
structed in each domain, have been intercombined. However, when s- AX they cease to be 
valid. 

Let us consider the pressure's expansion when ~(0: 

p = 1 f yMOa [(Z / e&$h (.- x)“. + 2-“%.f$D$ (- x)-‘-f* + . . .] 

The distance at which the second term becomes of the same order as the first gives the typical 
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size Ax of the free interaction domain. The linear theory of the external potential flow is 
true if AS < (duss) / 6. Hence we get that the boundary layer will separate, as in an incom- 
pressible liquid, if 

(27) 

AS z +O the Reynolds number will tend to a value computed from the critical mangnitudes of 
the parameters. The free interaction domain will be formed in conformity with the pressure 
gradient given by the first formula in (ll), while its extent will approximate to its own 
sonic value Az, =o(R-';3. If, however, the displacement's thickness is formed by a viscous 
sublayer, then AX, = O(H-“J~) /lo/ and the order of Ax, coincides with the order of the right- 
hand side of inequality (27). 
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